Ball Erkennung
Translations: deBall detection is a key skill that Nao robots must master. In our team, a CNN is used for this purpose. This is to find the ball in small image sections (patches). Details can be found in the team report in chapter 4: https://www2.informatik.hu-berlin.de/~naoth/docs/publications/technical/naoth-report19.pdf
There are a number of different aspects that can be examined in the context of a thesis. There are many different aspects that can be highlighted as part of a thesis. Here are a few ideas that can be implemented. Not all of them have to be dealt with within a thesis.
Compare different CNN architectures
It can be investigated how good a CNN can be on our dataset. This could be done by training a very deep and wide network and comparing it and comparing it to smaller networks that can run on the Nao robot.
The Nao robot has an upper and lower camera. In the lower camera the balls are typically larger than in the upper camera. It can be investigated whether it is useful to train two different nets for the two camera.
The B-Human team uses 3 neural networks for ball recognition. The first network reduces the dimension with convolution and pooling layers. Then a small classification network is applied to the output of the first network. This returns a number between 0 and 1. If the classification result is good enough, the output of the first mesh is passed to the third mesh which returns the center and the radius of the ball in the image. of the ball in the image. Details can be found in the B-Human team report in chapter 4.2.2.
Furthermore, the influence of (Monte Carlo) dropout, pruning, batchnorm, different regularization methods and optimization algorithms can be investigated. Also methods from from the field of "Neural Architecture Search" can be investigated.
Compare differently preprocessed data
The influence of different augmentation methods can be investigated. For example, Augmix: https://arxiv.org/pdf/1912.02781.pdf
A big topic in Deep Learning is the use of synthetic data. Here it has to be investigated how well a pre-training on computer generated images of the accuracy on a real data set helps. It would be conceivable to generate targeted images that occur little in the existing data set. For example removed balls. There is already preliminary work in Webots, Unreal Engine and Blender that can be used.
Eigene Ideen
You are welcome to contribute your own ideas. For this, it is worthwhile to take a look at our team report beforehand to see how our image processing pipeline is currently.
Relevant publications and theses:
- B-Human Teamreport: https://github.com/bhuman/BHumanCodeRelease/raw/master/CodeRelease2019.pdf
- NaoTH Teamreport: https://www.naoteamhumboldt.de/wp-content/papercite-data/pdf/naoth-report18.pdf
Possible procedure for the final thesis
We imagine the process as follows.
- Discussing the topic and getting to know each other
- Writing an exposé
- Discussing the exposé and possible adjustments
- Registration of the work
- Perform experiments on the provided data sets
- Evaluating the experiments
- Writing the final paper
- Writing an abstract of the results for the NaoTH team report.
Independently send a short status to the Nao team every two weeks.
Information about Nao Team Humboldt
Website: https://naoth.de
RoboCup Regeln: https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021.pdf
Slack: https://naoth.slack.com
Public Github: https://github.com/BerlinUnited
Internal Gitlab: https://scm.cms.hu-berlin.de/berlinunited
Source code of other RoboCup SPL teams
Public NaoTH Repo: https://github.com/BerlinUnited/NaoTH
Public Nao Devils Repo: https://github.com/NaoDevils/CodeRelease
Public B-human Repo: https://github.com/bhuman/BHumanCodeRelease
Bembelbots: https://github.com/Bembelbots
rUNSWift: https://github.com/UNSWComputing/rUNSWift-2019-release
Hulks: https://github.com/HULKs/HULKsCodeRelease
Publication lists of other teams
Possibly work of other teams can be helpful:
Naoth: https://www.naoteamhumboldt.de/en/publications/
Hulks: https://hulks.de/publications/
B-Human Abschlussarbeiten: https://b-human.de/theses-en.html
B-Human Publikationen: https://b-human.de/publications-en.html
Bembelbots: https://www.jrl.cs.uni-frankfurt.de/web/robocup/publications/
rUNSWift: https://github.com/UNSWComputing/rUNSWift-2019-release/raw/master/rUNSWift_Team_Report.pdf
Further information
Reviewer: V. Hafner
Adaptive Systems: https://hu.berlin/adapt
Supervision and technical support: Heinrich Mellmann, Stella Alice Schlotter.
Lab work required: possibly
Own PC necessary: yes